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EXCESS THERMODYNAMIC PROPERTIES
FOR HARD SPHERE FLUIDS IN
SEVERAL DIMENSIONALITIES

J. AMOROS and E. VILLAR
Departamento de Fisica Aplicada, Universidad de Cantabria, Santander, Spain.

( Received 12 July 1989)

Equations of state of the algebraic type for the hard disk fluid and the hard sphere fluid have been obtained
from recent simulation data. The introduction of a realistic pole furnishes good agreement with the
simulation results. The excess thermodynamic properties (entropy, enthalpy and Gibbs free energy) have
been calculated, together with those of four and five dimensional hard hypersphere fluids whose equations
of state have been proposed in an earlier work. All the results show excellent compatibility with the
available information.

KEY WORDS: Excess thermodynamic properties, hard sphere fluids, equations of state.

1 INTRODUCTION

In a recent work! we have proposed distinct equations of state (EOS) which
adequately represent the behaviour of four- and five-dimensional hard hypersphere
fluids. Here we complete this study with the treatment of the remaining accesible
dimensionalities (d = 2,3), whose interest is greater owing to their closer approxima-
tion to the real world. Although Carnahan and Starling® found an EOS which is
difficult to improve, the simulation data available at present allow slight modifications
to be made in order to increase the agreement.

On the other hand, we have evaluated the excess thermodynamic properties,
relative to those of an ideal gas at the same temperature and pressure for all possible
dimensionalities.

This allows us to obtain a compiete tabie of the major equilibrium properties for the
whole stable range of the hard hypersphere fluid. Although these results are not
comparable with direct experimental data, their validity must be equivalent to, or
perhaps greater than, the original EOS because the excess entropy depends more on
the lower-order virial coefficients than on the higher ones, as compared to the EOS?.

2 THEORETICAL BACKGROUND

The great majority of the EOS proposed for representing the behaviour of the hard
sphere fluid may be included in two analytical forms, independently of its dimension-
ality.
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In the first, the compressibility factor Z = PV/NkT is expressed as the ratio
between two polynomials, usually in the form:

Z=3 ay '/ —yy (N
i=1
where y is the packing fraction, i.c. the ratio between the geometric volume and the
volume of the system. In general, y may be expressed as:

v, N 7% (a\* a% [1\¢
V=N =V @y <E> " (d2)! <2> o @

where v, is the volume of a d-dimensional hard hypersphere, ¢ its diameter and
p* = No?/V the reduced density.

This expression for Z represents mathematically a particular case of a Padé
approximant* and includes all the Carnahan-Starling type variants.

The second form is really an improvement of the former, made by introducing the
existence of a pole in the compressibility factor for the regular close packing density®.
This quantity may then be expressed in the form:

3 /Yo y! i
2= Gy T Ca Ty TR ©

where y, is the regular close packing ratio. This equation has a unique fitting
parameter C because the others are fixed identifying them with those of the virial
expansion.

On the other hand, the expressions corresponding to the excess thermodynamic
properties depend on the thermodynamic representation employed, that is to say, on
the thermodynamic variables utilized. In the representation T-P, the resulting excess

entropy is:
§—8° Proz\ dP Pz -1
=T —] ——-1| ——dP 4
R L <6T>P P _[0 p “)

As this is the representation which is experimentally most accessible, it is the one most
frequently found in thermodynamics textbooks®”.

However, the T-V representation is more suitable for our study because the hard
sphere EOS appears in this form.

Nevertheless, the difference in the entropy of the two systems is evaluated for the
same pressures and temperatures.

The excess entropy is now®:

S — §° vioZ\ dv (Y Z -1
=T — —_— -
2 L (ar)V V+L s dV+inZ )

In our case, this expression allows a later simplification to be made since Z does not
depend on the temperature for hard-sphere systems.
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Therefore, the final result is:

S —8° yZ —1
=z J—dy (6)

The determination of the remaining functions of state is straightforward. In fact,
since the hard sphere EOS is of the form: P = Tf(V), from thermodynamics, one finds
(@U/dV); = 0 and (6U/éP); = 0, then

U-U°
RT

=0 (M

From this definition:

RT RT R ®)
and for hard spheres:
F—F° S—s°
RT R ®)
The excess enthalpy and the excess Gibbs free energy are equal to:
H—H°_U—U°+PV—RT_Z : (10)
RT — RT RT
—-G* H-H° §-5° vz —1
G-G"_ _ =Z—1—an+J~¥-dy ()
RT RT R o Y

3 EQUATION OF STATE

In this section our results concerning the EOS for each analyzed system are presented
in order of increasing dimensionality.

a) Hard Disks
The first interesting EOS is due to scaled particle theory (SPT)”:
Z=1/1-y)? (12)
later modified by Henderson'®
Z = (1 + 0.125yH)/(1 — y)* (13)
and Kratky!'!:
Z = (1 +0.112y%)/(1 — y)? (14)
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As can be seen, both equations have only one fitting parameter. This parameter is
fixed in order to obtain minimum deviation of Z from the best available simulation
data, probably those of Erpenbeck and Luban’2. Thus, one obtains:

Z = (1 +0.083114y%)/(1 — y)? (15)
Henderson and Kratky also proposed other equations!*'!! with two parameters:

1401282 0.043y*

- 16
A=y =y (16)
1+ 0.12802y%*  0.03003y° (an
(1-y? (1—y
Verlet and Levesque!* have also contributed an equation of the same type:
1 + 0.125y? 275y
— 2)’ _ y . (18)
(1= -y
Baus and Colot!® have joined all these equations in the following:
2 3+¢
_ltay Y (19)

(1—p? (1—y>2H

We have fitted all these equations to the mentioned simulation data and we have
found the best agreement with Henderson’s expression but with slightly different
coefficients:

_ 14012651y 0.03918y*
(1 —y)? (1-y)?

The comparison with the simulation is shown in Table 1. On the other hand, the
available virial coefficients in this case'!'*® set the number of the terms for Eq. (3),

(20)

Table 1 Results of the empirical equations for
hard disk fluid.

A/A, 300 200 100 5.0 3.0

Z.. 106337 109743 121068 14983 20771
Z* 106344 109753 121067 14984 20771
Z** 106337 1.09743 121068 14984 20773
A/A, 20 1.8 1.6 15 14

. 34243 41715 54964 66075 8.306
Z* 34246 41718 54958 66074 83312
Z** 34255 41727 54943  6.6007 83111

*Eq. (20); **Eq. 1)
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which is extended until i = 7. Taking into account that d = 2 and y, = n/2(3)*/* =
0.9069, the related equation is written as:

/0.9069 y
Z=1+2—2"7"""__ 14950 7 — 5155y — 4254y* — 3.374)?
" 1—(y/0.9069)+ 30 -y 5.155y — 4.254y° — 3.374y

—2.570y* — 1.845y° — 1.198)° @

These results are also shown in Table 1. Here the independent variable utilized was
the ratio between the area of the system A4 and that corresponding to regular close
packing, A,. Its relation with the original variable y is elementary:

AlAq = 1/2(3)'y.

The reason for this change is due to the direct transcription of the simulation data and
to the use of simple numbers.

b) Hard Spheres
The majority of empirical EOS are represented by the expression:
Z=(1+y+y —ap)(1 —y)° (22)

In fact, taking a =3, a=0, a=1 and a = 1.5, one obtains the Percus-Yevick
pressure and compressibility equations'’, the Carnahan-Starling (CS) equation? and
the Mansoori, Provine and Canfield equation'8, respectively.

More recently, Erpenbeck and Wood'® have obtained excellent simulation data,
which allows it to be checked. Fitting these data to that equation furnishes a = 0.9508
which is close to the Carnahan-Starling value, confirming once again the superiority
of their equation.

An improvement in the results is observed when an additional parameter is
introduced. Therefore, we have considered an equation of the form:

Z=(+y+y*—ay’ —by*y(1 -y’ (23)

and we have fitted the parameters to simulation data cited above, obtaining:
a = 0.64994; b = 0.70034.
The results are shown in Table 2.

Table 2 Results for the empirical equations for hard
sphere fiuid.

Vive 25 18 10 5 4

Z, 112777 118282 1.35939 1.88839 224356
Z* 112775 118283 1.35942 1.88849 224438
Z** 112786 1.18284 1.35943 1.88848 224431
ViV, 3 2 1.8 1.7 16

o 303114 585016 7.43040 8.60034 10.19308
Z* 303190 585051 742969 8.60014 10.19399
Z** 303137 583892 7.37313 855994 10.13040

*Eq. (23); **Eq. (24)
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The virial coefficients'®'2° are known to the same extent as in the case of hard disks.

Therefore, equation (3) is expressed here as:

7/0.7405 ) . 2
=143 —— 15 — y)?) — 005142y — 1.1
Z= 143 T sy SSIB60P/(1 — 1)) — 005142y — 11099y
—0.3013y® + 1.3302* + 3.8034y° + 9.7235y° o4

where d = 3; yo = (2)/2n/6 = 0,7405,

The results are also shown in Table 2. They are reported for the variable
VIV, = 2'21/6y.

Although the first procedure provides better agreement with the simulation data for
both hard disks and hard spheres, this trend may not hold in the range of the
metastable fluid because the influence of the pole increases. To our knowledge, no
simulation has been carried out in this range for hard disks, but Woodcock?!
performed an interesting study on hard spheres for the metastable fluid and even for
glass. In this context, we have verified the validity of our statement although the fast
increase of the compressibility factor also implies an increase in the dispersion of the
simulation.

¢) Four and Five Dimensional Hard Hyperspheres

As we pointed out earlier, research on the EOS for these systems was presented in a
recent work' of the authors.

4 EXCESS PROPERTIES

Using the EOS developed in the earlier sections, we have evaluated the excess entropy,
excess enthalpy and excess Gibbs free energy by developing the expressions (6), (10)
and (11). When the different EOS that have been proposed are analyzed, the results
differ among themselves by less than 1 %,. Therefore, we furnish only one numerical
value in each case. Moreover, the absence of direct experimental data does not allow a

Table 3 Excess quantities for hard disk fluid.

-5° —H° G-G°
4 3 3

AlA, R x 10 RT % 10 RT % 10
300 —-47 634 63.9

200 -10 97.5 98.5

100 —42 211 215

5.0 —200 498 518

30 -714 1080 1150

20 —2300 2420 2650

18 —3250 3170 3500

L6 —49%40 4490 4990

15 —6340 5600 6240

14 —8450 7320 8170
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more rigorous analysis. Our values agree very well with those carried out by
Carnahan and Starling® using their equation for hard spheres, and with those made
by these authors with some other available equations.

On the other hand, all the results show two features that stand out: 1) the absolute
value of the differences tends to zero when the volume increases; 2) such differences
are always negative for the entropy, which is intuitively evident.

The corresponding results are shown in Tables 3, 4, 5 and 6.

Table 4 Excess quantities for hard sphere fluid.

0 H— o G — GO

ViV, X100 o X 107~ x 102
25 —28 12.8 13.1

18 —55 18.3 18.8

10 —193 359 379

5 —90.2 88.8 97.9

4 —153 124 140

3 —311 203 234

2 —938 484 578

1.8 —1290 640 769

1.7 — 1540 758 912

1.6 — 1880 916 1100

Table 5 Excess quantities for four dimensional
hard hypersphere fluid.

P S8 102 H-H° 10 G-¢ 10
P x RT ° RT *
020 —689 6.37 7.06

040 —31.1 16.7 19.8

060 —79.0 333 412

080 —160 6022 762

090 —217 79.6 101

095 —251 91.3 116

100 —289 104.7 130

Table 6 Excess quantities for five dimensional
hard hypersphere fluid.

. 5-8 10? H-H 10 G-¢ 10
PR RT RT
020 —8.51 6.53 7.38

040 —354 16.2 19.7

060 —83.0 30.1 384

080 —155 49.9 65.4

100 —256 77.8 103

110 —320 95.5 128

115 —356 106 141

1.18 —378 112 150
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